

Wagtail Cookiecutter Foundation

A cookiecutter [https://github.com/audreyr/cookiecutter] template for Wagtail CMS [https://wagtail.io] was built using Zurb Foundation [https://foundation.zurb.com]
front-end framework. A demo of a default project generated from this cookiecutter is available at http://wagtail.chrisdev.com.

Getting Started

	Getting Started

Creating A Project

	Pre-Requisites

	Creating A Project

	Manual Installation

Usage

	Styling your Project

	Template Tags
	Top Menu to Offcanvas

	Upcoming Events

	Latest News

	App Modules
	Blog

	Contact

	Document Gallery

	Events

	Pages

	People

	Photo Gallery

	Products

	Utils

	Grunt Tasks
	Image Compression

	Using Browser Sync for browser testing

Provisioning and Deployment

	Deploying to a VPS
	Create a Virtual Server

	Creating a Deployment User

	Provisioning your Server and Deploying your Site
	Populate .env With Your Environment Variables

	Deployment to PythonAnywhere
	Overview

	Getting your code and dependencies installed on PythonAnywhere

	Setting environment variables in the console

	Database setup:

	Configure the PythonAnywhere Web Tab

	Static files

	Future deployments

	Deployment to Aldryn Cloud
	Steps to Deploy

References

	Project Settings
	Other Environment Settings

	Using Ansible
	Ansible Keystore

	Ansible Playbooks

	Ansible Variables
	Group Variables

	Host Variables

	Make Commands
	Make command line

Project Info

	Contributing

	Authors
	Development Leads

	Core Committers

	Contributors

Getting Started

Here is how we create a new Django project quickly while letting cookiecutter [https://github.com/audreyr/cookiecutter] to do all the work.

To get started we assume the following dependencies

pip
virtualenv/pyvenv/virtualenvwrapper
PostgreSQL
Bower

 Pre-Requisites

Pre-Requisites

To get started we assume the following dependencies

	pip

	virtualenv/pyvenv/virtualenvwrapper

	PostgreSQL

	Bower

 Creating A Project

Creating A Project

Let’s pretend you want to create a Django project called “wagtail_project”. Rather than using startproject and then editing the results to include your name, email, and various configuration issues that always get forgotten until the worst possible moment, get cookiecutter [https://github.com/audreyr/cookiecutter] to do all the work.

 Manual Installation

Manual Installation

Firstly, open up a command line shell in your new projects directory.

	Create a virtual environment

Linux/Mac OSX: pyvenv venv

Windows: c:\Python34\python -m venv myenv

Python 2.7

pyvenv is only included with Python 3.3 onwards.
To get virtual environments on Python 2, use the virtualenv package:

pip install virtualenv
virtualenv venv

Virtualenvwrapper

virtualenvwrapper [http://virtualenvwrapper.readthedocs.org/en/latest/index.html] provides a set of commands which makes working with virtual environments much more pleasant. It also places all your virtual environments in one place.

To install (make sure virtualenv is already installed):

pip install virtualenvwrapper
export WORKON_HOME=~/Envs
source /usr/local/bin/virtualenvwrapper.sh
mkvirtualenv venv

Windows:

pip install virtualenvwrapper-win
mkvirtualenv venv

	Activate the virtual environment

Linux/Mac OSX: source venv/bin/activate

Windows: venv/Scripts/activate.bat

Virtualenvwrapper: workon venv

	Install PIP requirements

pip install -r requirements/dev.txt

	**Create the database*

By default require PostgreSQL to be installed

createdb my_site

	Load the Initial Data
The cookiecutter comes with some pages already created for your
convenience including the Homepage with a working bx_slider slide show,
contact page, events and news/blog pages. To generate these pages run:

psql -d my_site -f ansible/roles/web/files/initial_data.sql

The default Admin username is admin

The default Admin password is admin123

To copy the media directory to project root.

./manage.py copy_media

	Install Packages (Foundation, Font-Awesome etc.) using Bower package manager

We use bower [http://bower.io] for front-end dependency management. To install front
dependencies use

bower install

This will install the supported version of Zurb Foundation [https://foundation.zurb.com], Font
Awesome [http://fontawesome.io] and bxSlider [http://bxslider.com] as well as their dependencies.

	Run the development server

./manage.py runserver

Your site is now accessible at http://localhost:8000,
with the admin backend available at http://localhost:8000/admin/.

 Styling your Project

Styling your Project

The projects generated with this cookiecutter include a settings file, named _settings.scss. You can find the settings file under <project_slug>/pages/static/css/.

Every component includes a set of variables that modify core structural or visual styles. If there’s something you can’t customize with a variable, you can just write your own CSS to add it.

Here’s an example set of settings variables. These change the default styling of buttons:

// Default padding for button.
$button-padding: 0.85em 1em !default;

// Default margin for button.
$button-margin: 0 $global-padding $global-padding 0 !default;

// Default fill for button. Is either solid or hollow.
$button-fill: solid !default;

// Default background color for button.
$button-background: $primary-color !default;

// Default hover background color for button.
$button-background-hover: scale-color($button-background, $lightness: -15%) !default;

// Default font color for button.
$button-font-color: #fff !default;

// Default alternative font color for button.
$button-font-color-alt: #000 !default;

// Default radius for button.
$button-radius: 0 !default;

// Default sizes for button.
$button-sizes: (
 tiny: 0.7,
 small: 0.8,
 medium: 1,
 large: 1.3,
) !default;

// Default font size for button.
$button-font-size: 0.9rem !default;

// Default opacity for a disabled button.
$button-opacity-disabled: 0.25 !default;

For further documentation on using sass check out Foundation SASS [http://foundation.zurb.com/sites/docs/sass.html].

 Template Tags

Template Tags

The listing of template tags can be found in {{project_slug}}/utils/templatetags/{{project_slug}}_utils.py. From there they can be modified.

Top Menu to Offcanvas

To switch to the regular top menu to the foundation offcanvas menu change {% top_menu parent=site_root calling_page=self %} to {% offcanvas_top_menu parent=site_root calling_page=self %} in the file {{project_slug}}/pages/templates/base.html.

Upcoming Events

The template tag {% upcoming_events %} is a feed of upcoming events in the order of upcoming dates by default. The count for the feed as well as the order can be changed in the utils file which can be found at {{project_slug}}/utils/templatetags/{{project_slug}}_utils.py.

Latest News

The template tag {% latest_news %} is a news feed of the most recent post. The count for this feed can be changed in the utils file which can be found at {{project_slug}}/utils/templatetags/{{project_slug}}_utils.py.

 App Modules

App Modules

We provide a comprehensive suite of apps to use for building your site. We take a modular approach so that can pick and choose the functionality you want to include.

Blog

The Blog Page module allows for your daily blog post, articles or even news posts.

	Now supports Facebook sized feed images by default 1200x630

	Blog page redesigned for a simpler look and feel

Contact

This is your Contact Page with included contact form that supports unlimited fields.

	New side bar supporting google map images

	Contact card flexibility

Document Gallery

This module allows to organize documents into “folders” based on common tags.
Organize documents in folders using wagtail tags

	Go to Documents section in Wagtail Admin.

	Add add a common tag name to all documents that you want to appear in the folder.

	Now create a Document Index page which displays all your Document folders.

	Create a Document Folder Child Page and enter the tags for the document that you want to appear in the folder.

	The Folder is now created with all the Documents matching the tags you want.

Events

The Event Page module allows for adding of your upcoming events with fields for date, location, time, cost and much more.

	New Event Feed design with scroll access which allows for multiple events to be presented in the feed.

Pages

This core module allows for different pages to be added including a Homepage and Standard Pages with multiple different template layouts.

	Standard Index now supports Feed Images

	Now supports template options for full page site of a standard page with a sidebar

People

The People Page module allows for biography pages for persons in your organization or team.

	New design to the people index with callout

Photo Gallery

The Photo Gallery module allows you to easily create Photo Galleries for your site Using the built in tagging functionality. Our photo gallery now uses Lightbox2 as clearing box has been removed from foundation. To create Photo Galleries simply:

	Go to Images section of the Wagtail Admin and click on Add an Image.

	Drag and drop images you want in your gallery and add common tag name to all the uploaded Images. You can also add same tag name to any existing images that you want to include in the gallery.

	Next create a Gallery Index Page which displays all your galleries.

	Add a Gallery Child Page and enter the tags of the Images that you want to appear in the Gallery. You can also choose a feed image so it can appear in Gallery index page.

	Your Gallery is now created with all images you want.

Products

The Product Page module allows for a store like look allowing you to display products with prices and also related products.

	New design to the product index with callout

	Redesign of the Product Page with carousel access to products

Utils

New updated share buttons with whatsapp added for mobile

 Grunt Tasks

Grunt Tasks

Make sure that nodejs [http://nodejs.org/download/] is installed. Then in the project root run

$ npm install
or
$ make node_modules

Image Compression

To compress images used in project’s made with this cookiecutter run

$ grunt imagemin

You can also use make to run the above task

$ make compress_images

Using Browser Sync for browser testing

To use browser-sync for Time-saving synchronised browser testing:

$ grunt browser-sync

 Deploying to a VPS

Deploying to a VPS

Create a Virtual Server

 Deployment to PythonAnywhere

Deployment to PythonAnywhere

Overview

Full instructions follow, but here’s a high-level view.

First time config:

	Pull your code down to PythonAnywhere using a Bash console and setup a virtualenv

	Set your config variables in the postactivate script

	Run the manage.py migrate and collectstatic commands

	Add an entry to the PythonAnywhere Web tab

	Set your config variables in the PythonAnywhere WSGI config file

Once you’ve been through this one-off config, future deployments are much simpler: just git pull and then hit the “Reload” button :)

Getting your code and dependencies installed on PythonAnywhere

Make sure your project is fully commited and pushed up to Bitbucket or Github or wherever it may be. Then, log into your PythonAnywhere account, open up a Bash console, clone your repo, and create a virtualenv:

git clone <my-repo-url> # you can also use hg
cd my-project-name
mkvirtualenv --python=/usr/bin/python3.5 my-project-name # or python2.7, etc
pip install -r requirements/production.txt # may take a few minutes

Setting environment variables in the console

Generate a secret key for yourself, eg like this:

python -c 'import random; print("".join(random.SystemRandom().choice("abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)") for _ in range(50)))'

Make a note of it, since we’ll need it here in the console and later on in the web app config tab.

Set environment variables via the virtualenv “postactivate” script (this will set them every time you use the virtualenv in a console):

vi $VIRTUAL_ENV/bin/postactivate

TIP: If you don’t like vi, you can also edit this file via the PythonAnywhere “Files” menu; look in the “.virtualenvs” folder.

Add these exports

export DJANGO_SETTINGS_MODULE='<project_slug>.settings.production'
export PROD_DATABASE_URL='<see below>'
export DJANGO_SECRET_KEY='<secret key goes here>'
export DJANGO_ALLOWED_HOST_NAME='<www.your-domain.com>'
export EMAIL_HOST='email_host'
export EMAIL_FROM='support@host.com'
export EMAIL_USER='email_user'
export EMAIL_PASSWD='email_passwd'

Database setup:

Go to the PythonAnywhere Databases tab and configure your database.

	For Postgres, setup your superuser password, then open a Postgres console and run a CREATE DATABASE my-db-name. You should probably also set up a specific role and permissions for your app, rather than using the superuser credentials. Make a note of the address and port of your postgres server.

	For MySQL, set the password and create a database. More info here: https://help.pythonanywhere.com/pages/UsingMySQL

	You can also use sqlite if you like! Not recommended for anything beyond toy projects though.

Now go back to the postactivate script and set the DATABASE_URL environment variable:

export DATABASE_URL='postgres://<postgres-username>:<postgres-password>@<postgres-address>:<postgres-port>/<database-name>'
or
export DATABASE_URL='mysql://<pythonanywhere-username>:<mysql-password>@<mysql-address>/<database-name>'
or
export DATABASE_URL='sqlite:////home/yourusername/path/to/db.sqlite'

If you’re using MySQL, you may need to run pip install mysqlclient, and maybe add mysqlclient to requirements/production.txt too.

Now run the migration, and collectstatic:

source $VIRTUAL_ENV/bin/postactivate
python manage.py migrate
python manage.py collectstatic
and, optionally
python manage.py createsuperuser

Configure the PythonAnywhere Web Tab

Go to the PythonAnywhere Web tab, hit Add new web app, and choose Manual Config, and then the version of Python you used for your virtualenv.

NOTE: If you’re using a custom domain (not on *.pythonanywhere.com), then you’ll need to set up a CNAME with your domain registrar.

When you’re redirected back to the web app config screen, set the path to your virtualenv. If you used virtualenvwrapper as above, you can just enter its name.

Click through to the WSGI configuration file link (near the top) and edit the wsgi file. Make it look something like this, repeating the environment variables you used earlier:

import os
import sys
path = '/home/<your-username>/<your-project-directory>'
if path not in sys.path:
 sys.path.append(path)

os.environ['DJANGO_SETTINGS_MODULE'] = '<project_slug>.settings.production'
os.environ['PROD_DATABASE_URL'] = '<as above>'
os.environ['DJANGO_SECRET_KEY'] = '<as above>'
os.environ['DJANGO_ALLOWED_HOST_NAME'] = '<as above>'
os.environ['EMAIL_HOST'] = '<as above>'
os.environ['EMAIL_FROM'] = '<as above>'
os.environ['EMAIL_USER'] = '<as above>'
os.environ['EMAIL_PASSWD'] = '<as above>'

from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()

Back on the Web tab, hit Reload, and your app should be live!

NOTE: you may see security warnings until you set up your SSL certificates. If you
want to supress them temporarily, set DJANGO_SECURE_SSL_REDIRECT to blank. Follow
the instructions here to get SSL set up: https://help.pythonanywhere.com/pages/SSLOwnDomains/

Static files

Essentially you’ll need an entry to match your STATIC_URL and STATIC_ROOT settings. There’s more info here: https://help.pythonanywhere.com/pages/DjangoStaticFiles

Future deployments

For subsequent deployments, the procedure is much simpler. In a Bash console:

workon my-virtualenv-name
cd project-directory
git pull
python manage.py migrate
python manage.py collectstatic

And then go to the Web tab and hit Reload

TIP: if you’re really keen, you can set up git-push based deployments: https://blog.pythonanywhere.com/87/

Inspired from Pythonanywhere deployment docs at https://cookiecutter-django.readthedocs.io/en/latest/deployment-on-pythonanywhere.html

 Deployment to Aldryn Cloud

Deployment to Aldryn Cloud

Wagtail is now supported on Aldryn Cloud [https://www.divio.com/en/]. The following steps will guide you to deploy Wagtail Cookiecutter Foundation [https://github.com/chrisdev/wagtail-cookiecutter-foundation] projects on Aldryn Cloud.

Steps to Deploy

	Create a Wagtail project (like wagtail-aldryn) on Aldryn using the guide - Get Started with Wagtail on Aldryn [https://support.divio.com/hc/en-us/articles/209053809-Get-Started-with-Wagtail-on-Aldryn]

	Create a local development environment of project generated.

	Suppose the project you want to deploy (generated with Wagtail Cookiecutter Foundation) is named as wagtail-demo.

	Now we can copy the apps directories from wagtail-demo project directory to wagtail-aldryn project directory. You can move apps like pages, blog, utils etc. You are free to move any app but remember all static assets are present in pages app.

	Copy the media directory to wagtail-aldryn project directory.

	Open requirements.in file from wagtail-aldryn project. Add the following requirements:

wagtailfontawesome==1.0.5
celery==3.1.23
django-cachalot==1.2.1
django-compressor==2.1
django-environ==0.4.0
django-foundation-formtags==0.0.6
django-wagtail-feeds==0.0.3
django-libsass==0.7
django-redis==4.4.4
elasticsearch==2.4.0
libsass==0.11.1

For updated list, copy the requirements from your wagtail-demo project.

	Open settings.py file from wagtail-aldryn project. Add the following:

INSTALLED_APPS.extend([
 # add your project specific apps here
 'compressor',
 'foundation_formtags',
 'wagtail_feeds',

 'utils',
 'pages',
 'blog',
 'events',
 'contact',
 'people',
 'photo_gallery',
 'products',
 'documents_gallery',
])

COMPRESS_PRECOMPILERS = (
 ('text/x-scss', 'django_libsass.SassCompiler'),
)

	Importing Database from wagtail-demo project.

	Create db dump of wagtail-demo project.

	Wagtail Cookiecutter Foundation and Aldryn projects use PostgreSQL as a database management system (DBMS). To transfer your existing Postgres data dumps into the wagtail-aldryn project, the commands to do so could look like following example:

docker exec <container_id> dropdb -U postgres db --if-exists

docker exec <container_id> createdb -U postgres db

docker exec <container_id> psql -U postgres --dbname=db -c "CREATE EXTENSION IF NOT EXISTS hstore"

docker run --rm -v /path/to/dump:/app/tmp/db_dump --link <container_id>:postgres postgres:9.4 /bin/bash -c pg_restore -h postgres -U postgres -F /app/tmp/db_dump --dbname=db -n public --no-owner --exit-on-error

Note: <container_id> is usually something like: projectslug_db (if you’re unsure, open the docker-compose.yaml file and check.

	Test locally if everything works.

	Push changes to Server

To push code changes to the test server, run for example:

git add .
git commit -m "Your commit message"
git push

To push DB changes, run:

aldryn project push db

To push media file changes, run:

aldryn project push media

To deploy the test server, run:

aldryn project deploy

Useful links:

	https://support.divio.com/hc/en-us/articles/209053809-Get-Started-with-Wagtail-on-Aldryn

	https://support.divio.com/hc/en-us/articles/208393155-Moving-your-Django-projects-to-Aldryn

	https://support.divio.com/hc/en-us/articles/208243415

 Project Settings

Project Settings

This project relies extensively on environment settings which will not work with Apache/mod_wsgi setups. It has been deployed successfully with both Gunicorn/Nginx and even uWSGI/Nginx.

For configuration purposes, the following table maps environment variables to their Django setting:

	Environment Variable

	Django Setting

	Development Default

	Production Default

	DJANGO_ADMIN_URL

	n/a

	r’^admin/’

	raises error

	DJANGO_CACHES

	CACHES (default)

	locmem

	redis

	DJANGO_DATABASES

	DATABASES (default)

	See code

	See code

	DJANGO_DEBUG

	DEBUG

	True

	False

	DJANGO_SECRET_KEY

	SECRET_KEY

	CHANGEME!!!

	raises error

	DJANGO_SECURE_BROWSER_XSS_FILTER

	SECURE_BROWSER_XSS_FILTER

	n/a

	True

	DJANGO_SECURE_SSL_REDIRECT

	SECURE_SSL_REDIRECT

	n/a

	True

	DJANGO_SECURE_CONTENT_TYPE_NOSNIFF

	SECURE_CONTENT_TYPE_NOSNIFF

	n/a

	True

	DJANGO_SECURE_FRAME_DENY

	SECURE_FRAME_DENY

	n/a

	True

	DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINS

	HSTS_INCLUDE_SUBDOMAINS

	n/a

	True

	DJANGO_SESSION_COOKIE_HTTPONLY

	SESSION_COOKIE_HTTPONLY

	n/a

	True

	DJANGO_SESSION_COOKIE_SECURE

	SESSION_COOKIE_SECURE

	n/a

	False

	DJANGO_DEFAULT_FROM_EMAIL

	DEFAULT_FROM_EMAIL

	n/a

	“your_project_name <noreply@your_domain_name>”

	DJANGO_SERVER_EMAIL

	SERVER_EMAIL

	n/a

	“your_project_name <noreply@your_domain_name>”

	DJANGO_EMAIL_SUBJECT_PREFIX

	EMAIL_SUBJECT_PREFIX

	n/a

	“[your_project_name] “

	DJANGO_ALLOWED_HOSTS

	ALLOWED_HOSTS

	[‘*’]

	[‘your_domain_name’]

The following table lists settings and their defaults for third-party applications, which may or may not be part of your project:

	Environment Variable

	Django Setting

	Development Default

	Production Default

	DJANGO_AWS_ACCESS_KEY_ID

	AWS_ACCESS_KEY_ID

	n/a

	raises error

	DJANGO_AWS_SECRET_ACCESS_KEY

	AWS_SECRET_ACCESS_KEY

	n/a

	raises error

	DJANGO_AWS_STORAGE_BUCKET_NAME

	AWS_STORAGE_BUCKET_NAME

	n/a

	raises error

	DJANGO_SENTRY_DSN

	SENTRY_DSN

	n/a

	raises error

	DJANGO_SENTRY_CLIENT

	SENTRY_CLIENT

	n/a

	raven.contrib.django.raven_compat.DjangoClient

	DJANGO_SENTRY_LOG_LEVEL

	SENTRY_LOG_LEVEL

	n/a

	logging.INFO

	DJANGO_MAILGUN_API_KEY

	MAILGUN_ACCESS_KEY

	n/a

	raises error

	DJANGO_MAILGUN_SERVER_NAME

	MAILGUN_SERVER_NAME

	n/a

	raises error

	NEW_RELIC_APP_NAME

	NEW_RELIC_APP_NAME

	n/a

	raises error

	NEW_RELIC_LICENSE_KEY

	NEW_RELIC_LICENSE_KEY

	n/a

	raises error

Other Environment Settings

	DJANGO_ACCOUNT_ALLOW_REGISTRATION (=True)

	Allow enable or disable user registration through django-allauth without disabling other characteristics like authentication and account management. (Django Setting: ACCOUNT_ALLOW_REGISTRATION)

 Using Ansible

Using Ansible

This cookiecutter also comes with a suite of Ansible [http://www.ansible.com/home] play books and roles for
provisioning your servers and deploying the site. We also support the creation
of a Vagrant based staging server to “stage” your site locally and allow you to tweak and
experiment with different deployment configurations. By default these play books
assume that all your application components django, PostgreSQL, redis and so on are
deployed to a single server. However, we can easily change the Vagrant staging
configuration to simulate more complex deployments including using a separate
Database server, multiple upstream wsgi servers and so on.

	Ansible Keystore

	Ansible Playbooks

	Ansible Variables
	Group Variables

	Host Variables

 Ansible Keystore

Ansible Keystore

In our project layout, the keystore folder located at ansible/cookiecutter.project_slug.keystore is utilized for storing authorized keys, deployment key and the production environment settings. The various provisioning and deployment playbooks expect these files to be in the keystore directory and would fail if they were not present. In case you are wondering, the included .gitignore and .hgignore should ensure that that no file in this directory can accidentally be added to your VCS. However, it is important to verify that this is indeed the case. The files are as follows:

	Authorized Keys (authorized_keys) - public key of the developers for e.g. id_rsa.pub. You can
concatenate keys for one or more developers and name as authorized_keys

	Deployment Key (host_name-deploy_user-deploy_keys.pub) - This is the Public key of the Deployment user generated running the command make deploy

	Production Environment Settings (production.env) - The Django production enviroment settings used in the project.

 Ansible Playbooks

Ansible Playbooks

To provision you servers run

cd ansible
#list the available tags
ansible-playbook -i staging provision.yml --list-tags

#Run all the plays

ansible-playbook -i staging provision.yml

#Install and configure various Ubuntu packages

ansible-playbook -i ansible/production ansible/provision.yml --tags packages

#Add basic security (UFW and Fail2Ban)

ansible-playbook -i ansible/production ansible/provision.yml --tags secure

#Install and configure PostgreSQL, set up the project's database

ansible-playbook -i ansible/production ansible/provision.yml --tags database

#Install and Configure LetsEncrypyt and Nginx

ansible-playbook -i ansible/production ansible/provision.yml --tags nginx_le

#Install VCS, Venv, Bower, Redis, Django, Load Initial Data, Gunicorn Celery

ansible-playbook -i ansible/production ansible/provision.yml --tags webapp

To deploy changes to production

make deploy

To make changes to your project settings edit env.production and also settings/production. Then run:

ansible-playbook -i ansible/production ansible/update_env.yml

 Ansible Variables

Ansible Variables

Group Variables

	Variable

	Default

	project_slug

	ssh://hg@bitbucket.org/username/wagtail_project

	project_title

	Wagtail Project

	project_name

	Wagtail Project

	virtualenvs_dir

	/home/django/virtualenvs/

	sites_dir

	/usr/local/sites

	nginx_root_dir

	/etc/nginx/sites-available

	gunicorn

	127.0.0.1:2015

	deploy_user

	django

	keystore_path

	project_slug/ansible/project_slug_keystore

	vcs

	hg - mecurial
git - git

Host Variables

	Variable

	Default

	use_ssl

	True
if this is going to be a production deployment

	DJANGO_SETTINGS_MODULE

	wagtail_project.settings.production

	HOST_NAME

	server_name

	DB_USER

	django

	DJANGO_ADMIN:

	django_admim_user_name

	DJANGO_ADMIN:

	your_django_admin_password

	DB_PASSWD

	The database password you must set a value for this

	DB_HOST

	localhost

	DB_NAME

	cookiecutter.project_slug_db

	EMAIL_HOST

	The SMTP email host name e.g. smtp.mandrillapp.com

	EMAIL_FROM

	support@chrisdev.com

	EMAIL_USER

	The email user

	EMAIL_PASSWD

	The email password

 Make Commands

Make Commands

The easiest way to get started is to use the built in make commands. Your project contains a Makefile that allows you to setup your development environment with a single command. This command will create your project’s virtual environment, install all pip dependencies, create the development database, run migrations and load initial data to database, install front-end dependencies and finally start the development server for you.

To do this run

make develop_env

You can access your site at http://localhost:8000. The Admin back-end is available at http://localhost:8000/admin/.The default Admin username is admin and The default Admin password is admin123.

Make command line

Create the virtualenv for the project

make virtualenv

Install the requirements to the virtualenv

make requirements

Create a PostgreSQL database for the project. It will have the same name as the project

make db

Run the migrations

make migrate

Populate the site with initial page structure

make initial_data

Copy the media(images and documents) to project root

make copy_media

Install all front-end dependencies with bower

make bower

Start the standard Django dev server

make runserver

Start Server with livereload functionality

make livereload

Run your unit tests

make test

Run your functional tests

make func_test

Install Node modules:

make node_modules

Minify Images used in site

make compress_images

Generate a static site from the project

make static_site

 Contributing

Contributing

Contributions are always welcome to improve this project. If you think you’ve found a bug or are interested in contributing fork this project and send the pull request. After review, your pull request will be merged. We are always happy to receive pull requests. If you identify any issue, please raise it in the issues section.

 Authors

Authors

Development Leads

	Christopher Martin Clarke (@chrisdev [https://github.com/chrisdev])

Core Committers

	Lendl Smith (@ilendl2 [https://github.com/ilendl2])

	Parbhat Puri (@parbhat [https://github.com/parbhat])

Contributors

	Fygul Hether (@fygul [https://github.com/fygul])

	Matt Westcott (@gasman [https://github.com/gasman])

 Index

Index

 P

P

 	
 	PythonAnywhere

 Host Wagtail on a VPS

Host Wagtail on a VPS

Create the Virtual Server

Start by creating a VPS on your platform of choice we’ve current tested
on Linode [https://linode.com/], Digital Ocean [https://www.digitalocean.com/] but we expect the underlying Ansible Playbooks
to work on other platforms. Your favorite vendor will typically allow you to select
size, server location and the Linux Distribution of the VPS instance. At this
point in time we only support Ubuntu Linux (14.04 and 16.04) but we
believe that the underlying Ansible Playbooks can easily be modified to
accommodate other Linux distributions. If you do so, please consider sending us
a Pull Request.

The underlying Ansible playbooks rely on SSH public key authentication.
So that once you’ve created the VPS you must add your SSH public key to the
Root users authorized_keys file (found in /root/.ssh/authorized_keys).
Note, some services like DigitalOcean allow you the upload your SSH public keys to your account so that
it will be automaically added when you create a new Droplet. You must also
ensure that your DNS zone has been correctly configured so that an A record
maps the name of the production or staging sever to the IP address the VPS.

Once you have created the VPS and configured the DNS provisioning and
deployment can be accomplished with three commands.

Run