
Wagtail Cookiecutter Foundation
Documentation

Release 0.1

Christopher Clarke

Oct 04, 2018

Getting Started

1 Getting Started 3

2 Pre-Requisites 5

3 Creating A Project 7

4 Manual Installation 9

5 Styling your Project 11

6 Template Tags 13

7 App Modules 15

8 Grunt Tasks 19

9 Deploying to a VPS 21

10 Deployment to PythonAnywhere 23

11 Deployment to Aldryn Cloud 27

12 Project Settings 31

13 Using Ansible 33

14 Make Commands 37

15 Contributing 39

16 Authors 41

i

ii

Wagtail Cookiecutter Foundation Documentation, Release 0.1

A cookiecutter template for Wagtail CMS was built using Zurb Foundation front-end framework. A demo of a default
project generated from this cookiecutter is available at http://wagtail.chrisdev.com.

Getting Started 1

https://github.com/audreyr/cookiecutter
https://wagtail.io
https://foundation.zurb.com
http://wagtail.chrisdev.com

Wagtail Cookiecutter Foundation Documentation, Release 0.1

2 Getting Started

CHAPTER 1

Getting Started

Here is how we create a new Django project quickly while letting cookiecutter to do all the work.

To get started we assume the following dependencies

pip
virtualenv/pyvenv/virtualenvwrapper
PostgreSQL
Bower

Get Cookiecutter

$ pip install cookiecutter

Now run it against this repo:

$ cookiecutter https://github.com/chrisdev/wagtail-cookiecutter-foundation.git

You’ll be prompted to provide some values for your project.

Enter the project

$ cd wagtail_project/

Create a git repo and push it there:

$ git init
$ git add .
$ git commit -m "first awesome commit"
$ git remote add origin git@github.com:cclarke/my_site.git
$ git push -u origin master

To create your project’s virtual environment, install all pip dependencies, create the development database, run migra-
tions and load initial data to database, install front-end dependencies and finally start the development server for you
run

3

https://github.com/audreyr/cookiecutter

Wagtail Cookiecutter Foundation Documentation, Release 0.1

make develop_env

You can access your site at http://localhost:8000. The Admin back-end is available at http://
localhost:8000/admin/.The default Admin username is admin and The default Admin password is admin123.

4 Chapter 1. Getting Started

CHAPTER 2

Pre-Requisites

To get started we assume the following dependencies

• pip

• virtualenv/pyvenv/virtualenvwrapper

• PostgreSQL

• Bower

5

Wagtail Cookiecutter Foundation Documentation, Release 0.1

6 Chapter 2. Pre-Requisites

CHAPTER 3

Creating A Project

Let’s pretend you want to create a Django project called “wagtail_project”. Rather than using startproject and then
editing the results to include your name, email, and various configuration issues that always get forgotten until the
worst possible moment, get cookiecutter to do all the work.

First, get Cookiecutter

$ pip install cookiecutter

Now run it against this repo:

$ cookiecutter https://github.com/chrisdev/wagtail-cookiecutter-foundation.git

You’ll be prompted for some values. Provide them, then a Django project will be created for you

Cloning into 'wagtail-cookiecutter-foundation'...
remote: Counting objects: 5849, done.
remote: Compressing objects: 100% (129/129), done.
remote: Total 5849 (delta 47), reused 0 (delta 0), pack-reused 5718
Receiving objects: 100% (5849/5849), 12.43 MiB | 2.64 MiB/s, done.
Resolving deltas: 100% (3291/3291), done.
Checking connectivity... done.
project_name [Wagtail Project]:
project_slug [wagtail_project]:
Select version_control_system:

1 - git
2 - hg
Choose from 1, 2 [1]:

Select vcs_host:
1 - bitbucket.org
2 - github.com
Choose from 1, 2 [1]:

your_bitbucket_or_github_user_name [chrisdev]:
author_name [Christopher Clarke]:
email [cclarke@chrisdev.com]:

(continues on next page)

7

https://github.com/audreyr/cookiecutter

Wagtail Cookiecutter Foundation Documentation, Release 0.1

(continued from previous page)

description [A short description of the project.]:
timezone [UTC]:
production_host_name [wagtail.chrisdev.com]:
version [0.1.0]:
use_letsencrypt [y]:
use_celery [y]:
use_django_cachalot [n]:
use_wagalytics_app [n]:
staging_host_name [wagtail-staging.chrisdev.com]:
deploy_user_name [django]:
database_user_name [django]:
django_admin_user [my_wagtail_admin]:
Select open_source_license:

1 - MIT
2 - BSD
3 - Apache Software License 2.0
4 - Not open source
Choose from 1, 2, 3, 4 [1]:

Enter the project and take a look around:

$ cd wagtail_project/
$ ls

Create a git repo and push it there:

$ git init
$ git add .
$ git commit -m "first awesome commit"
$ git remote add origin git@github.com:cclarke/my_site.git
$ git push -u origin master

8 Chapter 3. Creating A Project

CHAPTER 4

Manual Installation

Firstly, open up a command line shell in your new projects directory.

1. Create a virtual environment

Linux/Mac OSX: pyvenv venv

Windows: c:\Python34\python -m venv myenv

Python 2.7

pyvenv is only included with Python 3.3 onwards. To get virtual environments on Python 2, use the
virtualenv package:

pip install virtualenv
virtualenv venv

Virtualenvwrapper

virtualenvwrapper provides a set of commands which makes working with virtual environments much
more pleasant. It also places all your virtual environments in one place.

To install (make sure virtualenv is already installed):

pip install virtualenvwrapper
export WORKON_HOME=~/Envs
source /usr/local/bin/virtualenvwrapper.sh
mkvirtualenv venv

Windows:

pip install virtualenvwrapper-win
mkvirtualenv venv

2. Activate the virtual environment

Linux/Mac OSX: source venv/bin/activate

Windows: venv/Scripts/activate.bat

9

http://virtualenvwrapper.readthedocs.org/en/latest/index.html

Wagtail Cookiecutter Foundation Documentation, Release 0.1

Virtualenvwrapper: workon venv

3. Install PIP requirements

pip install -r requirements/dev.txt

4. **Create the database*

By default require PostgreSQL to be installed

createdb my_site

5. Load the Initial Data The cookiecutter comes with some pages already created for your convenience including
the Homepage with a working bx_slider slide show, contact page, events and news/blog pages. To generate
these pages run:

psql -d my_site -f ansible/roles/web/files/initial_data.sql

The default Admin username is admin

The default Admin password is admin123

To copy the media directory to project root.

./manage.py copy_media

6. Install Packages (Foundation, Font-Awesome etc.) using Bower package manager

We use bower for front-end dependency management. To install front dependencies use

bower install

This will install the supported version of Zurb Foundation, Font Awesome and bxSlider as well as their
dependencies.

7. Run the development server

./manage.py runserver

Your site is now accessible at http://localhost:8000, with the admin backend available at
http://localhost:8000/admin/.

10 Chapter 4. Manual Installation

http://bower.io
https://foundation.zurb.com
http://fontawesome.io
http://bxslider.com

CHAPTER 5

Styling your Project

The projects generated with this cookiecutter include a settings file, named _settings.scss. You can find the
settings file under <project_slug>/pages/static/css/.

Every component includes a set of variables that modify core structural or visual styles. If there’s something you can’t
customize with a variable, you can just write your own CSS to add it.

Here’s an example set of settings variables. These change the default styling of buttons:

// Default padding for button.
$button-padding: 0.85em 1em !default;

// Default margin for button.
$button-margin: 0 $global-padding $global-padding 0 !default;

// Default fill for button. Is either solid or hollow.
$button-fill: solid !default;

// Default background color for button.
$button-background: $primary-color !default;

// Default hover background color for button.
$button-background-hover: scale-color($button-background, $lightness: -15%) !default;

// Default font color for button.
$button-font-color: #fff !default;

// Default alternative font color for button.
$button-font-color-alt: #000 !default;

// Default radius for button.
$button-radius: 0 !default;

// Default sizes for button.
$button-sizes: (

tiny: 0.7,

(continues on next page)

11

Wagtail Cookiecutter Foundation Documentation, Release 0.1

(continued from previous page)

small: 0.8,
medium: 1,
large: 1.3,

) !default;

// Default font size for button.
$button-font-size: 0.9rem !default;

// Default opacity for a disabled button.
$button-opacity-disabled: 0.25 !default;

For further documentation on using sass check out Foundation SASS.

12 Chapter 5. Styling your Project

http://foundation.zurb.com/sites/docs/sass.html

CHAPTER 6

Template Tags

The listing of template tags can be found in {{project_slug}}/utils/templatetags/
{{project_slug}}_utils.py. From there they can be modified.

6.1 Top Menu to Offcanvas

To switch to the regular top menu to the foundation offcanvas menu change {% top_menu parent=site_root
calling_page=self %} to {% offcanvas_top_menu parent=site_root calling_page=self
%} in the file {{project_slug}}/pages/templates/base.html.

6.2 Upcoming Events

The template tag {% upcoming_events %} is a feed of upcoming events in the order of upcoming dates by
default. The count for the feed as well as the order can be changed in the utils file which can be found at
{{project_slug}}/utils/templatetags/{{project_slug}}_utils.py.

6.3 Latest News

The template tag {% latest_news %} is a news feed of the most recent post. The count for this feed
can be changed in the utils file which can be found at {{project_slug}}/utils/templatetags/
{{project_slug}}_utils.py.

13

Wagtail Cookiecutter Foundation Documentation, Release 0.1

14 Chapter 6. Template Tags

CHAPTER 7

App Modules

We provide a comprehensive suite of apps to use for building your site. We take a modular approach so that can pick
and choose the functionality you want to include.

7.1 Blog

The Blog Page module allows for your daily blog post, articles or even news posts.

• Now supports Facebook sized feed images by default 1200x630

• Blog page redesigned for a simpler look and feel

7.2 Contact

This is your Contact Page with included contact form that supports unlimited fields.

• New side bar supporting google map images

• Contact card flexibility

7.3 Document Gallery

This module allows to organize documents into “folders” based on common tags. Organize documents in folders using
wagtail tags

• Go to Documents section in Wagtail Admin.

• Add add a common tag name to all documents that you want to appear in the folder.

• Now create a Document Index page which displays all your Document folders.

• Create a Document Folder Child Page and enter the tags for the document that you want to appear in the folder.

15

Wagtail Cookiecutter Foundation Documentation, Release 0.1

• The Folder is now created with all the Documents matching the tags you want.

7.4 Events

The Event Page module allows for adding of your upcoming events with fields for date, location, time, cost and much
more.

• New Event Feed design with scroll access which allows for multiple events to be presented in the feed.

7.5 Pages

This core module allows for different pages to be added including a Homepage and Standard Pages with multiple
different template layouts.

• Standard Index now supports Feed Images

• Now supports template options for full page site of a standard page with a sidebar

7.6 People

The People Page module allows for biography pages for persons in your organization or team.

• New design to the people index with callout

7.7 Photo Gallery

The Photo Gallery module allows you to easily create Photo Galleries for your site Using the built in tagging func-
tionality. Our photo gallery now uses Lightbox2 as clearing box has been removed from foundation. To create Photo
Galleries simply:

• Go to Images section of the Wagtail Admin and click on Add an Image.

• Drag and drop images you want in your gallery and add common tag name to all the uploaded Images. You can
also add same tag name to any existing images that you want to include in the gallery.

• Next create a Gallery Index Page which displays all your galleries.

• Add a Gallery Child Page and enter the tags of the Images that you want to appear in the Gallery. You can also
choose a feed image so it can appear in Gallery index page.

• Your Gallery is now created with all images you want.

7.8 Products

The Product Page module allows for a store like look allowing you to display products with prices and also related
products.

• New design to the product index with callout

• Redesign of the Product Page with carousel access to products

16 Chapter 7. App Modules

Wagtail Cookiecutter Foundation Documentation, Release 0.1

7.9 Utils

New updated share buttons with whatsapp added for mobile

7.9. Utils 17

Wagtail Cookiecutter Foundation Documentation, Release 0.1

18 Chapter 7. App Modules

CHAPTER 8

Grunt Tasks

Make sure that nodejs is installed. Then in the project root run

$ npm install
or
$ make node_modules

8.1 Image Compression

To compress images used in project’s made with this cookiecutter run

$ grunt imagemin

You can also use make to run the above task

$ make compress_images

8.2 Using Browser Sync for browser testing

To use browser-sync for Time-saving synchronised browser testing:

$ grunt browser-sync

19

http://nodejs.org/download/

Wagtail Cookiecutter Foundation Documentation, Release 0.1

20 Chapter 8. Grunt Tasks

CHAPTER 9

Deploying to a VPS

9.1 Create a Virtual Server

Create a droplet at Digital Ocean selecting your size server, server name, server location and adding your ssh keys.
Once you have create a droplet, deploying your site is really simple.

If you are using digital ocean run

make pre_task

9.2 Creating a Deployment User

Next we want to create a deployment user. To create the deploy user for the production

make deploy_user

Next copy your id_rsa.pub to the ansible/{{cookiecutter.project_slug}}_keystore/ folder
and change the file name to authorized_keys

In addition, to creating the deploy user, this make command will download the RSA ssh public key for the deploy-
ment user into your ansible/{{cookiecutter.project_slug}}_keystore/ directory. Add this key as
a deployment key on sites like github.com or bitbucket.org

Note: If your repository is private. Make sure to add ssh key to the repository level deploy keys. You can add deploy
keys to the repository from the repository’s settings tab.

9.3 Provisioning your Server and Deploying your Site

Now we want to populate your site with all the project’s requirements

21

https://www.digitalocean.com/

Wagtail Cookiecutter Foundation Documentation, Release 0.1

make provision

You may also choose to run the individual tasks using tag by making use of the ansible tags.

Install and configure various Ubuntu packages

ansible-playbook -i ansible/production ansible/provision.yml --tags packages

Add basic security (UFW and Fail2Ban):

ansible-playbook -i ansible/production ansible/provision.yml --tags secure

Install and configure PostgreSQL, set up the project’s database

ansible-playbook -i ansible/production ansible/provision.yml --tags database

Install and Configure LetsEncrypyt and Nginx

ansible-playbook -i ansible/production ansible/provision.yml --tags nginx_le

Install VCS, Venv, Bower, Redis, Django, Load Initial Data, Gunicorn Celery

ansible-playbook -i ansible/production ansible/provision.yml --tags webapp
cp env.example ansible/wagtail_project_keystore/env.production

Once your site is up and running. You can push the changes to the live site using

make deploy

9.3.1 Populate .env With Your Environment Variables

Some of these services rely on environment variables set by you. There is an env.example file in the root directory of
this project as a starting point. Add your own variables to the file, then move it to the ansible/{{cookiecutter.
project_slug}}_keystore/ folder and change the file name to env.production. After you have change
the file name set the DJANGO_DEBUG to off.

22 Chapter 9. Deploying to a VPS

CHAPTER 10

Deployment to PythonAnywhere

10.1 Overview

Full instructions follow, but here’s a high-level view.

First time config:

1. Pull your code down to PythonAnywhere using a Bash console and setup a virtualenv

2. Set your config variables in the postactivate script

3. Run the manage.py migrate and collectstatic commands

4. Add an entry to the PythonAnywhere Web tab

5. Set your config variables in the PythonAnywhere WSGI config file

Once you’ve been through this one-off config, future deployments are much simpler: just git pull and then hit the
“Reload” button :)

10.2 Getting your code and dependencies installed on PythonAny-
where

Make sure your project is fully commited and pushed up to Bitbucket or Github or wherever it may be. Then, log into
your PythonAnywhere account, open up a Bash console, clone your repo, and create a virtualenv:

git clone <my-repo-url> # you can also use hg
cd my-project-name
mkvirtualenv --python=/usr/bin/python3.5 my-project-name # or python2.7, etc
pip install -r requirements/production.txt # may take a few minutes

23

Wagtail Cookiecutter Foundation Documentation, Release 0.1

10.3 Setting environment variables in the console

Generate a secret key for yourself, eg like this:

python -c 'import random; print("".join(random.SystemRandom().choice(
→˓"abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)") for _ in range(50)))'

Make a note of it, since we’ll need it here in the console and later on in the web app config tab.

Set environment variables via the virtualenv “postactivate” script (this will set them every time you use the virtualenv
in a console):

vi $VIRTUAL_ENV/bin/postactivate

TIP: If you don’t like vi, you can also edit this file via the PythonAnywhere “Files” menu; look in the “.virtualenvs”
folder.

Add these exports

export DJANGO_SETTINGS_MODULE='<project_slug>.settings.production'
export PROD_DATABASE_URL='<see below>'
export DJANGO_SECRET_KEY='<secret key goes here>'
export DJANGO_ALLOWED_HOST_NAME='<www.your-domain.com>'
export EMAIL_HOST='email_host'
export EMAIL_FROM='support@host.com'
export EMAIL_USER='email_user'
export EMAIL_PASSWD='email_passwd'

10.4 Database setup:

Go to the PythonAnywhere Databases tab and configure your database.

• For Postgres, setup your superuser password, then open a Postgres console and run a CREATE DATABASE my-
db-name. You should probably also set up a specific role and permissions for your app, rather than using the
superuser credentials. Make a note of the address and port of your postgres server.

• For MySQL, set the password and create a database. More info here: https://help.pythonanywhere.com/pages/
UsingMySQL

• You can also use sqlite if you like! Not recommended for anything beyond toy projects though.

Now go back to the postactivate script and set the DATABASE_URL environment variable:

export DATABASE_URL='postgres://<postgres-username>:<postgres-password>@<postgres-
→˓address>:<postgres-port>/<database-name>'
or
export DATABASE_URL='mysql://<pythonanywhere-username>:<mysql-password>@<mysql-
→˓address>/<database-name>'
or
export DATABASE_URL='sqlite:////home/yourusername/path/to/db.sqlite'

If you’re using MySQL, you may need to run pip install mysqlclient, and maybe add mysqlclient to
requirements/production.txt too.

Now run the migration, and collectstatic:

24 Chapter 10. Deployment to PythonAnywhere

https://help.pythonanywhere.com/pages/UsingMySQL
https://help.pythonanywhere.com/pages/UsingMySQL

Wagtail Cookiecutter Foundation Documentation, Release 0.1

source $VIRTUAL_ENV/bin/postactivate
python manage.py migrate
python manage.py collectstatic
and, optionally
python manage.py createsuperuser

10.5 Configure the PythonAnywhere Web Tab

Go to the PythonAnywhere Web tab, hit Add new web app, and choose Manual Config, and then the version of
Python you used for your virtualenv.

NOTE: If you’re using a custom domain (not on *.pythonanywhere.com), then you’ll need to set up a CNAME with
your domain registrar.

When you’re redirected back to the web app config screen, set the path to your virtualenv. If you used virtualen-
vwrapper as above, you can just enter its name.

Click through to the WSGI configuration file link (near the top) and edit the wsgi file. Make it look something like
this, repeating the environment variables you used earlier:

import os
import sys
path = '/home/<your-username>/<your-project-directory>'
if path not in sys.path:

sys.path.append(path)

os.environ['DJANGO_SETTINGS_MODULE'] = '<project_slug>.settings.production'
os.environ['PROD_DATABASE_URL'] = '<as above>'
os.environ['DJANGO_SECRET_KEY'] = '<as above>'
os.environ['DJANGO_ALLOWED_HOST_NAME'] = '<as above>'
os.environ['EMAIL_HOST'] = '<as above>'
os.environ['EMAIL_FROM'] = '<as above>'
os.environ['EMAIL_USER'] = '<as above>'
os.environ['EMAIL_PASSWD'] = '<as above>'

from django.core.wsgi import get_wsgi_application
application = get_wsgi_application()

Back on the Web tab, hit Reload, and your app should be live!

NOTE: you may see security warnings until you set up your SSL certificates. If you want to supress them
temporarily, set DJANGO_SECURE_SSL_REDIRECT to blank. Follow the instructions here to get SSL set up:
https://help.pythonanywhere.com/pages/SSLOwnDomains/

10.6 Static files

Essentially you’ll need an entry to match your STATIC_URL and STATIC_ROOT settings. There’s more info here:
https://help.pythonanywhere.com/pages/DjangoStaticFiles

10.7 Future deployments

For subsequent deployments, the procedure is much simpler. In a Bash console:

10.5. Configure the PythonAnywhere Web Tab 25

https://help.pythonanywhere.com/pages/DjangoStaticFiles

Wagtail Cookiecutter Foundation Documentation, Release 0.1

workon my-virtualenv-name
cd project-directory
git pull
python manage.py migrate
python manage.py collectstatic

And then go to the Web tab and hit Reload

TIP: if you’re really keen, you can set up git-push based deployments: https://blog.pythonanywhere.com/87/

Inspired from Pythonanywhere deployment docs at https://cookiecutter-django.readthedocs.io/en/latest/
deployment-on-pythonanywhere.html

26 Chapter 10. Deployment to PythonAnywhere

https://cookiecutter-django.readthedocs.io/en/latest/deployment-on-pythonanywhere.html
https://cookiecutter-django.readthedocs.io/en/latest/deployment-on-pythonanywhere.html

CHAPTER 11

Deployment to Aldryn Cloud

Wagtail is now supported on Aldryn Cloud. The following steps will guide you to deploy Wagtail Cookiecutter
Foundation projects on Aldryn Cloud.

11.1 Steps to Deploy

1. Create a Wagtail project (like wagtail-aldryn) on Aldryn using the guide - Get Started with Wagtail on
Aldryn

2. Create a local development environment of project generated.

3. Suppose the project you want to deploy (generated with Wagtail Cookiecutter Foundation) is named as
wagtail-demo.

4. Now we can copy the apps directories from wagtail-demo project directory to wagtail-aldryn project
directory. You can move apps like pages, blog, utils etc. You are free to move any app but remember all
static assets are present in pages app.

5. Copy the media directory to wagtail-aldryn project directory.

6. Open requirements.in file from wagtail-aldryn project. Add the following requirements:

wagtailfontawesome==1.0.5
celery==3.1.23
django-cachalot==1.2.1
django-compressor==2.1
django-environ==0.4.0
django-foundation-formtags==0.0.6
django-wagtail-feeds==0.0.3
django-libsass==0.7
django-redis==4.4.4
elasticsearch==2.4.0
libsass==0.11.1

For updated list, copy the requirements from your wagtail-demo project.

27

https://www.divio.com/en/
https://github.com/chrisdev/wagtail-cookiecutter-foundation
https://github.com/chrisdev/wagtail-cookiecutter-foundation
https://support.divio.com/hc/en-us/articles/209053809-Get-Started-with-Wagtail-on-Aldryn
https://support.divio.com/hc/en-us/articles/209053809-Get-Started-with-Wagtail-on-Aldryn

Wagtail Cookiecutter Foundation Documentation, Release 0.1

7. Open settings.py file from wagtail-aldryn project. Add the following:

INSTALLED_APPS.extend([
add your project specific apps here
'compressor',
'foundation_formtags',
'wagtail_feeds',

'utils',
'pages',
'blog',
'events',
'contact',
'people',
'photo_gallery',
'products',
'documents_gallery',

])

COMPRESS_PRECOMPILERS = (
('text/x-scss', 'django_libsass.SassCompiler'),

)

8. Importing Database from wagtail-demo project.

• Create db dump of wagtail-demo project.

• Wagtail Cookiecutter Foundation and Aldryn projects use PostgreSQL as a database management system
(DBMS). To transfer your existing Postgres data dumps into the wagtail-aldryn project, the commands to
do so could look like following example:

docker exec <container_id> dropdb -U postgres db --if-exists

docker exec <container_id> createdb -U postgres db

docker exec <container_id> psql -U postgres --dbname=db -c "CREATE EXTENSION IF
→˓NOT EXISTS hstore"

docker run --rm -v /path/to/dump:/app/tmp/db_dump --link <container_id>:postgres
→˓postgres:9.4 /bin/bash -c pg_restore -h postgres -U postgres -F /app/tmp/db_
→˓dump --dbname=db -n public --no-owner --exit-on-error

Note: <container_id> is usually something like: projectslug_db (if you’re unsure, open the docker-
compose.yaml file and check.

9. Test locally if everything works.

10. Push changes to Server

To push code changes to the test server, run for example:

git add .
git commit -m "Your commit message"
git push

To push DB changes, run:

aldryn project push db

To push media file changes, run:

28 Chapter 11. Deployment to Aldryn Cloud

Wagtail Cookiecutter Foundation Documentation, Release 0.1

aldryn project push media

To deploy the test server, run:

aldryn project deploy

Useful links:

• https://support.divio.com/hc/en-us/articles/209053809-Get-Started-with-Wagtail-on-Aldryn

• https://support.divio.com/hc/en-us/articles/208393155-Moving-your-Django-projects-to-Aldryn

• https://support.divio.com/hc/en-us/articles/208243415

11.1. Steps to Deploy 29

https://support.divio.com/hc/en-us/articles/209053809-Get-Started-with-Wagtail-on-Aldryn
https://support.divio.com/hc/en-us/articles/208393155-Moving-your-Django-projects-to-Aldryn
https://support.divio.com/hc/en-us/articles/208243415

Wagtail Cookiecutter Foundation Documentation, Release 0.1

30 Chapter 11. Deployment to Aldryn Cloud

CHAPTER 12

Project Settings

This project relies extensively on environment settings which will not work with Apache/mod_wsgi setups. It has
been deployed successfully with both Gunicorn/Nginx and even uWSGI/Nginx.

For configuration purposes, the following table maps environment variables to their Django setting:

Environment Variable Django Setting Devel-
opment
Default

Production Default

DJANGO_ADMIN_URL n/a r’^admin/’ raises error
DJANGO_CACHES CACHES (default) locmem redis
DJANGO_DATABASES DATABASES (default) See code See code
DJANGO_DEBUG DEBUG True False
DJANGO_SECRET_KEY SECRET_KEY CHANGEME!!!raises error
DJANGO_SECURE_BROWSER_XSS_FILTERSE-

CURE_BROWSER_XSS_FILTER
n/a True

DJANGO_SECURE_SSL_REDIRECTSE-
CURE_SSL_REDIRECT

n/a True

DJANGO_SECURE_CONTENT_TYPE_NOSNIFFSE-
CURE_CONTENT_TYPE_NOSNIFF

n/a True

DJANGO_SECURE_FRAME_DENYSE-
CURE_FRAME_DENY

n/a True

DJANGO_SECURE_HSTS_INCLUDE_SUBDOMAINSHSTS_INCLUDE_SUBDOMAINSn/a True
DJANGO_SESSION_COOKIE_HTTPONLYSES-

SION_COOKIE_HTTPONLY
n/a True

DJANGO_SESSION_COOKIE_SECURESES-
SION_COOKIE_SECURE

n/a False

DJANGO_DEFAULT_FROM_EMAILDE-
FAULT_FROM_EMAIL

n/a “your_project_name <nore-
ply@your_domain_name>”

DJANGO_SERVER_EMAIL SERVER_EMAIL n/a “your_project_name <nore-
ply@your_domain_name>”

DJANGO_EMAIL_SUBJECT_PREFIXEMAIL_SUBJECT_PREFIXn/a “[your_project_name] “
DJANGO_ALLOWED_HOSTS ALLOWED_HOSTS [‘*’] [‘your_domain_name’]

31

mailto:noreply@your_domain_name
mailto:noreply@your_domain_name
mailto:noreply@your_domain_name
mailto:noreply@your_domain_name

Wagtail Cookiecutter Foundation Documentation, Release 0.1

The following table lists settings and their defaults for third-party applications, which may or may not be part of your
project:

Environment Variable Django Setting Development
Default

Production Default

DJANGO_AWS_ACCESS_KEY_IDAWS_ACCESS_KEY_ID n/a raises error
DJANGO_AWS_SECRET_ACCESS_KEYAWS_SECRET_ACCESS_KEYn/a raises error
DJANGO_AWS_STORAGE_BUCKET_NAMEAWS_STORAGE_BUCKET_NAMEn/a raises error
DJANGO_SENTRY_DSN SENTRY_DSN n/a raises error
DJANGO_SENTRY_CLIENT SENTRY_CLIENT n/a raven.contrib.django.raven_compat.DjangoClient
DJANGO_SENTRY_LOG_LEVELSEN-

TRY_LOG_LEVEL
n/a logging.INFO

DJANGO_MAILGUN_API_KEY MAIL-
GUN_ACCESS_KEY

n/a raises error

DJANGO_MAILGUN_SERVER_NAMEMAIL-
GUN_SERVER_NAME

n/a raises error

NEW_RELIC_APP_NAME NEW_RELIC_APP_NAMEn/a raises error
NEW_RELIC_LICENSE_KEY NEW_RELIC_LICENSE_KEYn/a raises error

12.1 Other Environment Settings

DJANGO_ACCOUNT_ALLOW_REGISTRATION (=True) Allow enable or disable user registration through
django-allauth without disabling other characteristics like authentication and account management. (Django
Setting: ACCOUNT_ALLOW_REGISTRATION)

32 Chapter 12. Project Settings

CHAPTER 13

Using Ansible

This cookiecutter also comes with a suite of Ansible play books and roles for provisioning your servers and deploying
the site. We also support the creation of a Vagrant based staging server to “stage” your site locally and allow you
to tweak and experiment with different deployment configurations. By default these play books assume that all your
application components django, PostgreSQL, redis and so on are deployed to a single server. However, we
can easily change the Vagrant staging configuration to simulate more complex deployments including using a separate
Database server, multiple upstream wsgi servers and so on.

13.1 Ansible Keystore

In our project layout, the keystore folder located at ansible/cookiecutter.project_slug.keystore
is utilized for storing authorized keys, deployment key and the production environment settings. The various provi-
sioning and deployment playbooks expect these files to be in the keystore directory and would fail if they were not
present. In case you are wondering, the included .gitignore and .hgignore should ensure that that no file in
this directory can accidentally be added to your VCS. However, it is important to verify that this is indeed the case.
The files are as follows:

• Authorized Keys (authorized_keys) - public key of the developers for e.g. id_rsa.pub. You can concatenate
keys for one or more developers and name as authorized_keys

• Deployment Key (host_name-deploy_user-deploy_keys.pub) - This is the Public key of the Deployment user
generated running the command make deploy

• Production Environment Settings (production.env) - The Django production enviroment settings used in the
project.

13.2 Ansible Playbooks

To provision you servers run

33

http://www.ansible.com/home

Wagtail Cookiecutter Foundation Documentation, Release 0.1

cd ansible
#list the available tags
ansible-playbook -i staging provision.yml --list-tags

#Run all the plays

ansible-playbook -i staging provision.yml

#Install and configure various Ubuntu packages

ansible-playbook -i ansible/production ansible/provision.yml --tags packages

#Add basic security (UFW and Fail2Ban)

ansible-playbook -i ansible/production ansible/provision.yml --tags secure

#Install and configure PostgreSQL, set up the project's database

ansible-playbook -i ansible/production ansible/provision.yml --tags database

#Install and Configure LetsEncrypyt and Nginx

ansible-playbook -i ansible/production ansible/provision.yml --tags nginx_le

#Install VCS, Venv, Bower, Redis, Django, Load Initial Data, Gunicorn Celery

ansible-playbook -i ansible/production ansible/provision.yml --tags webapp

To deploy changes to production

make deploy

To make changes to your project settings edit env.production and also settings/production. Then run:

ansible-playbook -i ansible/production ansible/update_env.yml

13.3 Ansible Variables

13.3.1 Group Variables

Variable Default
project_slug ssh://hg@bitbucket.org/username/wagtail_project
project_title Wagtail Project
project_name Wagtail Project
virtualenvs_dir /home/django/virtualenvs/
sites_dir /usr/local/sites
nginx_root_dir /etc/nginx/sites-available
gunicorn 127.0.0.1:2015
deploy_user django
keystore_path project_slug/ansible/project_slug_keystore
vcs hg - mecurial git - git

34 Chapter 13. Using Ansible

ssh://hg@bitbucket.org/username/wagtail_project

Wagtail Cookiecutter Foundation Documentation, Release 0.1

13.3.2 Host Variables

Variable Default
use_ssl True if this is going to be a production deployment
DJANGO_SETTINGS_MODULE wagtail_project.settings.production
HOST_NAME server_name
DB_USER django
DJANGO_ADMIN: django_admim_user_name
DJANGO_ADMIN: your_django_admin_password
DB_PASSWD The database password you must set a value for this
DB_HOST localhost
DB_NAME cookiecutter.project_slug_db
EMAIL_HOST The SMTP email host name e.g. smtp.mandrillapp.com
EMAIL_FROM support@chrisdev.com
EMAIL_USER The email user
EMAIL_PASSWD The email password

13.3. Ansible Variables 35

mailto:support@chrisdev.com

Wagtail Cookiecutter Foundation Documentation, Release 0.1

36 Chapter 13. Using Ansible

CHAPTER 14

Make Commands

The easiest way to get started is to use the built in make commands. Your project contains a Makefile that allows
you to setup your development environment with a single command. This command will create your project’s virtual
environment, install all pip dependencies, create the development database, run migrations and load initial data to
database, install front-end dependencies and finally start the development server for you.

To do this run

make develop_env

You can access your site at http://localhost:8000. The Admin back-end is available at http://
localhost:8000/admin/.The default Admin username is admin and The default Admin password is admin123.

14.1 Make command line

Create the virtualenv for the project

make virtualenv

Install the requirements to the virtualenv

make requirements

Create a PostgreSQL database for the project. It will have the same name as the project

make db

Run the migrations

make migrate

Populate the site with initial page structure

37

Wagtail Cookiecutter Foundation Documentation, Release 0.1

make initial_data

Copy the media(images and documents) to project root

make copy_media

Install all front-end dependencies with bower

make bower

Start the standard Django dev server

make runserver

Start Server with livereload functionality

make livereload

Run your unit tests

make test

Run your functional tests

make func_test

Install Node modules:

make node_modules

Minify Images used in site

make compress_images

Generate a static site from the project

make static_site

38 Chapter 14. Make Commands

CHAPTER 15

Contributing

Contributions are always welcome to improve this project. If you think you’ve found a bug or are interested in
contributing fork this project and send the pull request. After review, your pull request will be merged. We are always
happy to receive pull requests. If you identify any issue, please raise it in the issues section.

39

Wagtail Cookiecutter Foundation Documentation, Release 0.1

40 Chapter 15. Contributing

CHAPTER 16

Authors

16.1 Development Leads

• Christopher Martin Clarke (@chrisdev)

16.2 Core Committers

• Lendl Smith (@ilendl2)

• Parbhat Puri (@parbhat)

16.3 Contributors

• Fygul Hether (@fygul)

• Matt Westcott (@gasman)

41

https://github.com/chrisdev
https://github.com/ilendl2
https://github.com/parbhat
https://github.com/fygul
https://github.com/gasman

Wagtail Cookiecutter Foundation Documentation, Release 0.1

42 Chapter 16. Authors

Index

P
PythonAnywhere, 23

43

	Getting Started
	Pre-Requisites
	Creating A Project
	Manual Installation
	Styling your Project
	Template Tags
	App Modules
	Grunt Tasks
	Deploying to a VPS
	Deployment to PythonAnywhere
	Deployment to Aldryn Cloud
	Project Settings
	Using Ansible
	Make Commands
	Contributing
	Authors

